JOINT SEALANT RESEARCH

Rigid Pavement Treatments & Repairs

DAN ZOLLINGER KEIVAN NESHVADIAN

TEXAS TRANSPORTATION INSTITUTE

JULY 2012

2012 National Pavement Preservation Conference

The Concern and the Risk

- •Erode-able Base Material
- Heavy TrafficMoist Condition

Sealing Necessary

•Sufficient Drainage System Low Traffic

Climate

Sealing should be considered if budget is available

Failure Mechanism

Adhesive Failure;

Debonding of the sealant and slabs

Top View (Field)

Adhesive Failure

Section View

What causes it?

- Cycles of loading (Traffic, Temperature)
- Sealant fatigue
- Existence of dust and uncleanness
- Freeze-Thaw damages

Failure Mechanism

Cohesive Failure;

Fatigue Failure of the Sealant material

Top View (Field) Section View

Cohesive Failure

What causes it?

- Cycles of loading (Traffic, Temperature)
- Solar energy and sunrise
- Material stiffening (Loss of flexibility)
- Freeze-thaw damages after crack initiation

Effect of Water Hydro Pressure on Sealant Failure <u>Upward</u>

Sealant Failure due to Hydraulic Pressure

- The sealant has been forced out;
- Hydro pressure from the water in the joint after heavy traffic is passing

Sealant Failure due to Hydraulic Pressure

Unbroken Joints

Sealant Design

- Problems with Narrow Joints:
 - Improper Shape Factor
 - Excessive Stress when Curling -warping
 - · Transverse Cracks in the middle of the slabs

Field Testing

Joint Sealant Type

- Hot Pour rubberized asphalt
- Silicone self-leveling
- preformed Compression

Joint Seal Condition

- 50% debonded
- 75% debonded
- Completely debonded

Movable Joint

opening after debonding

Joint Well Installation

- Different dirtiness prior to sealing
- Different moisture prior to sealing

Flow Rate on Existing Unsealed Joint

Saw cut width: 1/8 inch

Crack widths: 0.04 inch

Flow Rate (0.18 psi water head pressure):

0.11 gal/hr/ft (dirty joint well)

0.14 gal/hr/ft (cleaned joint well)

Cracks could NOT be cleaned perfectly

Test Site Preparation

Sawcut Layout of Test Area

Sand and Air Blasting

Compression Seal Placement

Backer Rod Placing

Silicon and Hot-pour Seal Placement

Debonding Sealants

Silicon

Bonded

Debonded

Hot pour

Bonded

Debonded

2012 NATIONAL PAVEMENT PRESERVATION CONCERENCE PRANTIPE RELYING THE MESSAGE FOR CHANG

Flow Test Results of Sealed Joints

- Controlling the joint sealant damage precisely is very difficult
 - Hot pour sealant possibly damaged more than target value

Movable Joint System

Installation of Movable Joint System

Movable Joint System

Flow Rate vs. Joint Opening

Joint opening width (inch)	Joint opening width (mm)	Flow rate (gallon/min./ft)			
		No seal	Silicon	Hotpour	Compression
0.002	0.05	2.9	0.020	0.001	0
0.008	0.2	3.8	0.18	0.01	0
0.016	0.4	5.0	0.6	0.03	0
0.024	0.6	6.2	1.5	0.05	0
0.031	0.8	7.4	2.7	0.1	0
0.039	1.0	8.6	3.5	0.18	0
0.047	1.2	9.5	4.6	0.4	0
0.055	1.4	11.0	5.9	0.6	0
0.063	1.6	11.8	7.2	0.8	0
0.071	1.8	13.2	8.0	1.4	0
0.079	2.0	15.0	9.7	2.0	0
0.087	2.2	16.7	11.3	2.7	0
0.094	2.4	16.7	12.0	3.8	0
0.102	2.6	16.7	13.3		0
0.110	2.8		14.3		0
0.118	3.0		16.2		0.000
0.126	3.2				0.001
0.134	3.4				0.002
0.142	3.6				0.005
0.150	3.8				0.16
0.157	4.0				0.8
0.165	4.2				1.9
0.173	4.4				3.0
0.181	4.6				4.1
0.189	4.8				5.2
0.197	5.0				6.2
0.205	5.2				7.5
0.213	5.4				8.2
0.220	5.6				9.4
0.228	5.8				10.9
0.236	6.0				11.8
The second second	2000 CONTRACTOR	Name of Street, or other			THE REAL PROPERTY.

Flow Rate vs. Various Debonding Percentage - Silicon Sealant

3/8 inch Joint - Silicon sealant - installed during winter (50 °F)

100% debonded

Infiltration Rate vs. Debonding - Silicon Sealant

Flow Rate vs. Debonding Percentage - Hot pour Sealant

3/8 inch Joint - Hot pour sealant - installed during winter (50 °F)

Infiltration Rate vs. Various Debonding – Hot pour Sealant

Silicon Sealant vs. Hot pour Sealant

The Effect of Surface Preparation

Inputs:

Sealant Type: Two-Part Self Leveling Silicone

Aggregate Type: Limestone

Changing the surface preparation method can increase the Number of cycle load

Flow Rate vs. Dirtiness level

 Four Different Dirtiness levels were applied by brushing slurries with different concentrations on the joint walls prior to sealing;

- 1. Clean Joints, No Dirt (0% Slurry)
- 2. Dusty Joints (30% Concentration of Slurry)
- 3. Dirty Joints (40% Concentration of Slurry)
- 4. Very Dirty Joints (50% Concentration of Slurry)

Flow Rate vs. Dirtiness level

With the maximum joint opening (3 mm) the very dirty joint allows 6 times more water into the joint compare to a clean joints

Flow Rate Increasing Rate with Joint Opening for Different Dirtiness Levels

On Going Field Tests

- Bonding Quality vs. Moisture on Joint Well
 - Four different Moisture levels

Lab Test for Aging Effect

Electro Force Device

 Electro Force Device for aging test (Cycle of loading and unloading)

Evaluation of Sealant Longevity

- 1. Aging the samples in "Environmental Room"
- 2. Adjust the Electro Force Device to the slab movement strain
- 3. Testing the aged and un-aged samples in the lab.
- 4. Testing the samples from the field (known traffic & climate)
- 5. Calibration of the lab data to the field

Lab Test for Sealant Bonding Failure

The Erosion Model

Erosion Model

$$\frac{f_i}{f_0} = e^{-(\frac{\alpha}{N-\Delta})^{\lambda}}$$

$$N = ESAL * p (\%)$$

- Climate (Rain)
- Climate (Aging)
- Drainage Sys
- Sealant Bond
- Sealant Installation
- Traffic
- Field and Lab Data

P is a probability function that contains three factors :

P1 : Probability of the Rain (# of wet days/ 365)

P2: Drainage (1- Drainage Condition Score)

P3: Sealant Quality

 $P_3 = (Seal Bonding Condition) * (Sealant Installation)$

Sensitivity Analysis - Pavement Structure

The Pavement

Traffic (AADT): 30'000

Slab Thickness:10"

Joint Spacing: 15"

LTE: No Dowel

AC Base layer,2"

CTS as subbase,5"

Sensitivity Analysis- Effect of Wet Days (P1)

P1: Probability of the Rain (# of wet days/ 365)

Sensitivity Analysis- Effect of Drainage (P2)

P2 : Drainage

Sensitivity Analysis- Effect of Seal Type & Quality

P3: Sealant Quality

Sensitivity Analysis- Effect of Seal Installation

P3: P4: Sealant Installation

Thanks for your attention